Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Can J Diabetes ; 47(2): 207-221, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2251442

ABSTRACT

Navigating the coronavirus disease-2019 (COVID-19, now COVID) pandemic has required resilience and creativity worldwide. Despite early challenges to productivity, more than 2,000 peer-reviewed articles on islet biology were published in 2021. Herein, we highlight noteworthy advances in islet research between January 2021 and April 2022, focussing on 5 areas. First, we discuss new insights into the role of glucokinase, mitogen-activated protein kinase-kinase/extracellular signal-regulated kinase and mitochondrial function on insulin secretion from the pancreatic ß cell, provided by new genetically modified mouse models and live imaging. We then discuss a new connection between lipid handling and improved insulin secretion in the context of glucotoxicity, focussing on fatty acid-binding protein 4 and fetuin-A. Advances in high-throughput "omic" analysis evolved to where one can generate more finely tuned genetic and molecular profiles within broad classifications of type 1 diabetes and type 2 diabetes. Next, we highlight breakthroughs in diabetes treatment using stem cell-derived ß cells and innovative strategies to improve islet survival posttransplantation. Last, we update our understanding of the impact of severe acute respiratory syndrome-coronavirus-2 infection on pancreatic islet function and discuss current evidence regarding proposed links between COVID and new-onset diabetes. We address these breakthroughs in 2 settings: one for a scientific audience and the other for the public, particularly those living with or affected by diabetes. Bridging biomedical research in diabetes to the community living with or affected by diabetes, our partners living with type 1 diabetes or type 2 diabetes also provide their perspectives on these latest advances in islet biology.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Islets of Langerhans , Animals , Mice , Biology , Diabetes Mellitus, Type 1/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Humans
2.
Can J Diabetes ; 46(4): 419-427, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-2257535

ABSTRACT

The coronavirus-2019 (COVID-19) pandemic has had significant impact on research directions and productivity in the past 2 years. Despite these challenges, since 2020, more than 2,500 peer-reviewed articles have been published on pancreatic islet biology. These include updates on the roles of isocitrate dehydrogenase, pyruvate kinase and incretin hormones in insulin secretion, as well as the discovery of inceptor and signalling by circulating RNAs. The year 2020 also brought advancements in in vivo and in vitro models, including a new transgenic mouse for assessing beta-cell proliferation, a "pancreas-on-a-chip" to study glucose-stimulated insulin secretion and successful genetic editing of primary human islet cells. Islet biologists evaluated the functionality of stem-cell-derived islet-like cells coated with semipermeable biomaterials to prevent autoimmune attack, revealing the importance of cell maturation after transplantation. Prompted by observations that COVID-19 symptoms can worsen for people with obesity or diabetes, researchers examined how islets are directly affected by severe acute respiratory syndrome coronavirus 2. Herein, we highlight novel functional insights, technologies and therapeutic approaches that emerged between March 2020 and July 2021, written for both scientific and lay audiences. We also include a response to these advancements from patient stakeholders, to help lend a broader perspective to developments and challenges in islet research.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Islets of Langerhans Transplantation , Islets of Langerhans , Animals , Biology , Diabetes Mellitus, Type 1/therapy , Humans , Insulin , Islets of Langerhans/physiology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL